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To understand how foraging decisions impact individual fitness of herbivores, nutritional ecologists must consider the complex
in vivo dynamics of nutrient–nutrient interactions and nutrient–toxin interactions associated with foraging. Mathematical modeling
has long been used to make foraging predictions (e.g. optimal foraging theory) but has largely been restricted to a single currency
(e.g. energy) or using simple indices of nutrition (e.g. fecal nitrogen) without full consideration of physiologically based interactions
among numerous co-ingested phytochemicals. Here, we describe a physiologically based model (PBM) that provides a mechanistic
link between foraging decisions and demographic consequences. Including physiological mechanisms of absorption, digestion and
metabolism of phytochemicals in PBMs allows us to estimate concentrations of ingested and interacting phytochemicals in the
body. Estimated phytochemical concentrations more accurately link intake of phytochemicals to changes in individual fitness than
measures of intake alone. Further, we illustrate how estimated physiological parameters can be integrated with the geometric
framework of nutrition and into integral projection models and agent-based models to predict fitness and population responses of
vertebrate herbivores to ingested phytochemicals. The PBMs will improve our ability to understand the foraging decisions of
vertebrate herbivores and consequences of those decisions and may help identify key physiological mechanisms that underlie diet-
based ecological adaptations.
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Implications

Food intake by wild herbivores shapes the distribution of
both plants and animals across the globe. The use of phy-
siologically based models (PBMs) will help formalize the link
between phytochemical consumption and population
demography for vertebrate herbivores. Understanding and
predicting demographic outcomes of foraging is critical for
effective wildlife management, especially in light of rapidly
changing food availability and quality across landscapes.

Introduction

A central focus in the field of foraging ecology is to under-
stand how diet quality influences the behavior, distribution

and population dynamics of animals. For vertebrate herbi-
vores, the quality and quantity of phytochemicals (both
nutrients and toxins) in foods can significantly alter the
foraging behavior, physiology and growth of both captive
(Dearing et al., 2002; Sorensen et al., 2005b; Marsh et al.,
2006) and free-ranging individuals (DeGabriel et al., 2009;
Moore et al., 2010; Frye et al., 2013; Stolter et al., 2013;
Ulappa et al., 2014). Captive studies have established causal
relationships between phytochemicals and foraging (Wiggins
et al., 2003; McLean et al., 2007; Kirmani et al., 2010;
Torregrossa et al., 2012; Shipley et al., 2012) and individual
demographic outcomes such as changes in energy budgets,
body mass or survival (Sorensen et al., 2005b; Kohl et al.,
2014 and 2016b). These studies generally focus on single
phytochemicals as an analog for whole plants (Wiggins et al.,
2003; McLean et al., 2007; Kirmani et al., 2010; Shipley
et al., 2012) and often do not capture the phytochemical
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complexity of herbivores foraging in landscapes with diverse
plant communities.
In the 1950s and the decades following, it was common in

studies of free-ranging vertebrate herbivores to measure a
single currency (often energy) and use mathematical mod-
eling to make foraging and demographic predictions based
on that currency (e.g. optimal foraging theory: Emlen, 1966;
MacArthur and Pianka, 1966; Schoener, 1971; Charnov,
1976; Pyke et al., 1977; Belovsky, 1978; dynamic energy
budget (DEB) theory: Kooijman and Metz, 1984; Nisbet et al.,
2000; adaptive herbivore ecology: Owen-Smith, 2002 and
2004). Since then, we have gained knowledge of the com-
plexity of interacting phytochemicals, and the importance of
assessing multiple constituents at the same time (e.g.
ecological stoichiometry: Muller et al. 2001; Moe et al.,
2005; geometric framework (GF): Simpson and Rau-
benheimer, 1993 and 2001; Raubenheimer and Simpson,
1998). Field studies on vertebrate herbivores have increas-
ingly incorporated aspects of complex phytochemicals
inherent in natural systems when assessing links to popu-
lation demography (Rode and Robbins, 2000; Wam et al.,
2018). However, field studies often provide only correlative
links between phytochemicals and demographic para-
meters. As a consequence, we lack a mechanistic under-
standing how the capacity to process phytochemicals by
individual herbivores (e.g. Solon-Biet et al., 2014; Simpson
et al., 2017) translates to changes in nutritional condition
(Parikh et al., 2017), reproduction (Brittas, 1988; DeGabriel
et al., 2009), survival (Wing and Messmer, 2016) or popu-
lation density (Fauchald et al., 2017) of free-ranging ver-
tebrates. Theoretical advances have attempted to use
estimates of individual physiological responses to toxic
phytochemicals in order to link browsing to population
stability of vertebrate herbivores (Feng et al., 2009; Liu
et al., 2012). However, these approaches are limited by a
lack of empirical physiological data required to test and
refine the parameters that underlie demographic models of
wild herbivores consuming complex phytochemicals.
A key to linking foraging behavior to demography is

greater ability to predict variation in the physiological con-
sequences of consuming phytochemicals among individuals,
among populations within a species (biogeographic varia-
tion) and among species (evolutionary variation). The paucity
of genomic data for non-model, wild vertebrate herbivores
continues to be a critical barrier (although see Ge et al.,
2013; Zhao et al., 2013; Campbell et al., 2016; Gordon et al.,
2016). The application of functional genomic analyses to
wild invertebrate systems demonstrates the great promise
for identifying physiological tolerance to phytochemicals (Li
et al., 2017; Snoeck et al., 2017), but such applications are
still in their earliest stages for vertebrates (Campbell et al.,
2016; Kohl et al., 2016a). In addition, relatively diverse
foraging behaviors associated with long life spans and wide
geographic dispersal potential of vertebrates often confound
the ability to mechanistically link foraging behavior with
physiological mechanisms and demographic consequences
(Forbey et al., 2013; DeGabriel et al., 2014).

We propose that PBMs, particularly those developed in
modern biomedical research, provide the needed framework
to generate physiological data that can strengthen existing
ecological approaches used to predict demographic con-
sequences of plant–herbivore interactions (Figure 1). Speci-
fically, the field of pharmacology has developed PBMs
designed to predict the effectiveness and health con-
sequences of pharmaceuticals and nutraceuticals in humans
(Esch et al., 2015; Sager et al., 2015; Ting et al., 2015;
Tsamandouras et al., 2015). These PBMs use data on mole-
cular expression and physiological function of proteins in the
body of consumers to predict what the body does to ingested
drugs or nutrients (pharmacokinetics) and what the resultant
concentrations of drugs or nutrients do to the body
(pharmacodynamics). One objective of PBMs is ‘personalized
pharmacology,’ where genetic variation (sequence and
expression) of the proteins that absorb, metabolize or bind to
specific chemical structures is used to determine the optimal
combination and concentration of drugs and nutrients that
elicit desired changes in cellular function, body mass and
survival (Alyass et al., 2015; Locke et al., 2015; Wang et al.,
2015; Bray et al., 2016; Rao et al., 2017). The result is an
accurate prediction of human health at the individual level
based on how genes govern the physiological response to
ingested chemicals. Similarly, we propose that PBMs could
increase the knowledge of physiological interactions
between herbivores and ingested phytochemicals to more
accurately predict fitness outcomes.
Although existing PBMs in humans typically focus on

predicting responses to a single drug, there is increased
interest to predict health responses to drug–drug and drug–
herb interactions (Mano et al., 2015; Zhao et al., 2011;
Gurley et al., 2017; Lepist and Ray, 2017). Similarly, the GF
for nutrition provides an analytical framework that considers
fitness responses to the multi-dimensional phytochemical
environment consumed by herbivores. The underlying idea
behind this framework is that the ingestion of one dietary
item can affect the ingestion or digestion of another
(Simpson and Raubenheimer, 2012). For example, the effects
of a toxin on an animal’s physiology may be intricately linked
to the relative balance of nutrients in the food (Villalba and
Provenza, 2005; Au et al., 2013). The GF provides an
analytical construct that can empirically deal with several
phytochemical currencies at the same time, to describe,
understand, and predict foraging and fitness outcomes
of individuals and groups of animals (Simpson and
Raubenheimer, 2012). The focus of the GF is on observing
the choices that individuals make when faced with differ-
ent dietary options within a nutritional, multi-dimensional,
space to identify patterns of diet selection without a priori
assumptions as to what may be guiding that selection. The
GF has revealed that the degree to which animals can
regulate their intake of multiple nutrients results in a bal-
ance (or imbalance) among nutrients that can have
demographic consequences (Solon-Biet et al., 2014;
Simpson et al., 2017). Geometric framework links multi-
dimensional nutrient intake to fitness, and was initially
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demonstrated in invertebrate species (Simpson and
Raubenheimer, 1993 and 2001). More recently, this fra-
mework has been applied to both captive (Sørensen et al.,
2008; Hewson-Hughes et al., 2011 and 2012; Solon-Biet
et al., 2014; Felton et al., 2016; Simpson et al., 2017) and
free-ranging (Rode and Robbins, 2000; Felton et al., 2009;
Rothman et al., 2011; Machovsky-Capuska et al., 2016)
vertebrates. Extensive work on the mouse (Mus musculus)
under a wide range of dietary conditions demonstrates
how the ratios of multiple nutrients consumed directly
alters life history traits and metabolic function of indivi-
duals (Simpson et al., 2017). As demonstrated in inverte-
brates, post-ingestive absorption and use of nutrients can
be accounted for in GF models to explain metabolic and
fitness costs of diets (Simpson and Raubenheimer, 2001).
One important application of GF is an increased capacity to
manage fitness through the regulation of nutrient bal-
ances. Physiologically based model have potential to aid in
GF outcomes by identifying and quantifying the physiolo-
gical mechanism that increase or decrease the assimilation
and concentrations of ingested nutrients within the body
compartments of individuals.
Here we describe how PBMs can be used to predict indi-

vidual variation in phytochemical exposure based on the
absorption and metabolism of ingested phytochemicals
(kinetics) and nutritional consequences based on
concentration-dependent physiological effects of ingested
phytochemicals (dynamics). It is important to note that the

PBMs we describe focus on predictions made after the ani-
mal has selected a food item. In other words, PBMs do not
address the complexities of food preferences and other
behavioral aspects of food selection (Shipley et al., 1999;
Felton et al., 2018). Instead, we focus on how PBMs can be
used to explain variation in physiological parameters that
are a consequence of food selection. In addition, we
show how PBMs can leverage the GF to treat intake and
post-ingestive physiological processes as an integrated
system (Raubenheimer and Simpson, 1998; Simpson and
Raubenheimer, 2001) to better predict individual fitness
and population-level demographic outcomes. For example,
PBMs can predict changes in nutrient assimilation based on
known individual variation in genetically determined
capacity to detoxify toxins that inhibit digestion and
metabolism of nutrients. When applied to GF modeling,
knowledge of how concentrations of multiple nutritional
currencies are physiologically constrained by toxins can
create a united context to explain how animals reach
nutritional balance through selection or avoidance of both
nutrients and toxins. For example, understanding the phy-
siological capacity to absorb, metabolize, exploit and resist
the bioactivity of phytochemicals could explain why some
individuals are more strongly inhibited by toxins than others
(Pass et al., 2001; Sorensen and Dearing, 2003; Sorensen
et al., 2004; Shipley et al., 2012; Kohl et al., 2014 and
2015). Mechanistic PBMs adopted from biomedicine could
help provide the physiological knowledge needed to

Figure 1 Overview illustrating the relationship between physiological and demographic parameters that can predict physiological and demographic
responses in vertebrate herbivores consuming phytochemicals. Key physiological responses include exposure (concentration [Conc]-time course) to both
toxic [T] and nutrient [N] phytochemicals based on the expression of genes, proteins and microbes, and functional changes in rates of absorption,
digestion, and metabolism of toxin and nutrients that result in concentration-dependent changes in available energy that links to body mass and density
of herbivores. aEnergy represents one example of a predicted currency that is influenced by toxin and nutrient exposure in the body of a theoretical
herbivore (systemic concentration over time) that can link to body mass and demographic parameters.
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improve management of herbivores. Specifically, PBMs help
estimate the individual mechanisms that could, along with
the GF and existing demographic models, better connect
individual foraging decisions to population demographic
consequences.

Physiologically based models
Several key features of PBMs make them particularly
applicable to generating the data needed to predict demo-
graphic responses of vertebrate herbivores to phytochem-
icals. First, PBMs have a strong genetic basis that can explain
demographic outcomes. For example, genetic variation in
efflux transporters and metabolizing enzymes that influence
systemic exposure to drugs predict survival of human
patients (Nowell et al., 2005; Ekhart et al., 2009). Similarly,
microbial genetic diversity within hosts can influence chan-
ges in body mass and survival of humans (Turnbaugh et al.,
2006; Celleno et al., 2007; Tucci et al., 2010). Second, the
in vivo and in vitro assays developed to estimate physiolo-
gical responses to drugs and nutrients for personalized
medicine provide ecologists with the necessary experimental
tools to quantify physiological data to parameterize PBMs
(see Supplementary Material S1). Lastly, while the focus of
pharmacological PBMs is to predict human responses to
drugs, the physiological processes of absorption and meta-
bolism of drugs are transferable to understanding exposure
to both toxic and nutritional phytochemicals in wild
herbivores.
While there are numerous physiological mechanisms that

could link intake of phytochemicals to demographics, we
focus on the physiological processes that influence exposure
to phytochemicals. We define phytochemical exposure as the
concentration-time course of phytochemicals in the gut,
blood or tissues that are linked to changes in physiological
function and body mass. Phytochemical exposure is influ-
enced by expression of genes, and activities of proteins and
microbes that regulate the absorption and distribution (e.g.
efflux transporters), as well as metabolism and excretion
(e.g. metabolizing enzymes) of ingested phytochemicals
(Sorensen et al., 2006; Forbey et al., 2013). For physiological
function, we focus on concentration-dependent changes in
digestive and metabolic function because phytochemicals
alter digestion and cellular metabolism by vertebrates
(Spalinger et al., 2010; Au et al., 2013; Kohl et al., 2015) and
microbes (Calsamiglia et al., 2007; Patra and Saxena, 2011;
Al-Jumaili et al., 2017). For example, diet interacts with the
microbiome to change short chain fatty acid absorption that
regulates histone acetylation and cellular energy (West and
Meng, 1968; Schilderink et al., 2013; den Besten et al.,
2013). In addition, many toxic phytochemicals can inhibit
digestive enzymes (Kohl et al., 2015) as well as enzymes
responsible for cellular energy production (Forbey et al.,
2011). This variation in the efficiency of digestion and cel-
lular metabolism may influence the nutritional resources
available for animals to grow, survive and reproduce.
There are no examples, to our knowledge, in wild verte-

brate systems that predict phytochemical exposure and

resultant changes in available nutrients through PBMs. As
such, we describe the specific parameter estimates that can
be used in PBMs and demonstrate how PBM outputs can be
integrated into existing ecological models to predict demo-
graphic consequences (Figure 1). The equations we describe
here have been developed for toxic phytochemicals. How-
ever, we provide initial ideas of how these equations can be
used to predict changes in the nutritional balances that
translate to demographic consequences. Our mathematical
example chooses energy as the nutritional currency using the
assumption that the animal may be limited in energy.
Focusing on energy allows PBM predictions to directly inte-
grate into existing bioenergetic models that predict demo-
graphics (e.g. DEB model, Kooijman and Metz, 1984).
However, we acknowledge that to fully understand the
underlying nutritional drivers behind the foraging decisions
and consequent effects on population dynamics of herbi-
vores, a whole range of nutritional and anti-nutritional con-
stituents and the balance among them must be considered
(Simpson and Raubenheimer, 2001 and 2012). Therefore,
other nutritional constituents, such as protein, carbohy-
drates, fats or minerals, can be similarly used as currencies in
the models.

Predicting systemic exposure to ingested phytochemicals
The ability to predict systemic exposure of ingested chemi-
cals has a long history in pharmacology (Teorell, 1937a and
1937b; Bellman et al., 1960; Jacquez et al., 1960). The
addition of PBMs to pharmacological models increased
the ability to predict drug concentrations and responses
among species with distinct genetic, morphological and
physiological traits (Boxenbaum, 1982; Dsouza and
Boxenbaum, 1988). Likewise, PBMs that predict systemic
exposure of phytochemicals in the body could help ecologists
predict phytochemical responses within and among species
that are known to differ in physiological capacity and dietary
specialization (Pass et al., 2001; Sorensen and Dearing,
2003; Sorensen et al., 2004; Shipley et al., 2012).
We use mathematical kinetic models and physiological

parameter estimates to predict phytochemical exposure (i.e.
concentration of phytochemical over time) in the gastro-
intestinal tract (hereafter, gut; sub index G in models) and
blood (sub index B in models) of an herbivore after a single
meal (Figure 2, Table 1). For our models, we let I(t) be the
food intake of an herbivore at time t. The parameter p is
the concentration of toxic phytochemical consumed, and
parameter (1− p) is the concentration of nutritional phyto-
chemical consumed. For nutritional phytochemicals, they are
further divided into two categories: those that can be
absorbed directly across the gut (e.g. glucose and protein)
and those that must first be digested or altered by host or
microbial enzymes before absorption (e.g. by pancreatic
(Whitcomb and Lowe, 2007) and brush border (Pontremoli
et al., 2015) enzymes of hosts; cellulase of microbes
(Svartström et al., 2017; Comtet-Marre et al., 2018)). We let
(1–r) be the proportion of the nutrient that can be absorbed
directly and r is the proportion of the same nutrient, which
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requires digestion or other modification before absorption.
To determine exposure to phytochemicals in the gut, we let
TG(t) be the amount of toxic phytochemical in the gut at time
t. We let kaG be the absorption rate of the phytochemical
from the gut compartment into the blood and we let kmG be
the rate of phytochemical metabolized (for toxins) or diges-
ted (for nutrients) by both host and microbial enzymes in the
gut before absorption. These rates are dependent on the
physio‐chemical properties (e.g. tissue/blood partition coef-
ficients, Camp et al., 2015a; Daina et al., 2017) of each
ingested phytochemical and the expression and activity of
transport and metabolizing proteins by hosts and associated
microbiome (Peters and McLeod, 2008; Peters et al., 2016;
Wilson and Nicholson, 2017; Cui, 2018; Santos et al., 2018).
Rates may also be influenced by interactions with other co-
occurring phytochemicals consumed by the herbivores

(Chung et al., 2007; Androutsopoulos et al., 2010; Chen
et al., 2010).
For toxic phytochemicals, the variable TG(t) satisfies the

following differential equation:
dTG tð Þ
dt

=pI tð Þ#kaGTG tð ÞG tð Þ#kmGTG tð Þ (1)

For nutritional phytochemicals, NG(t) satisfies the follow-
ing differential equation:
dNG tð Þ

dt
= 1#pð Þ 1#rð ÞI tð Þ + 1#pð ÞkmGrI tð Þ#kaGNG tð Þ

(2)
both with given initial values. For toxins, this equation means
the rate of change of toxin in the gut (i.e. phytochemical
exposure in the gut, Figure 2) equals the amount of toxin
absorbed from the gut compartment into the blood minus
the amount of phytochemical metabolized by herbivores and
gut microbes before absorption. For nutrients, the rate of
change of nutrient in the gut equals the amount of nutrient
directly absorbed from the gut compartment into the blood
plus the amount of nutrient digested (or liberated) by her-
bivores and gut microbes before absorption. In other words,
host and microbial modification in the gut reduces TG(t) of
toxic phytochemicals, whereas host and microbial modifica-
tion, specifically digestion of larger macronutrients in the
gut, increases NG(t) of nutritional phytochemicals in the gut.
To determine systemic exposure to phytochemicals (i.e.

concentration over time in blood), we let TB(t) and NB(t)
denote the concentration of toxic phytochemical and nutri-
tional phytochemical in the blood, respectively. For toxins,
systemic exposure is reduced by first pass metabolism in the
liver and distribution of toxin into tissues. We let kmL be the
rate of toxin metabolized by drug metabolizing enzymes in
the liver of the host and kaB be the absorption rate, or dis-
tribution, of the phytochemical from the blood compartment
into tissues. We let VB be the total volume of blood estimated
from allometric equations (Lindstedt and Schaeffer, 2002).
For toxins, the dynamics of TB(t) can be described by the

following differential equation which represents a one com-
partment model:

VB
dTB tð Þ
dt

=kmGTG tð Þ#VBkmLTB tð Þ (3)

Existing pharmacological pharmacokinetic models allow
for this equation to include multiple compartments where
the distribution of toxins from blood into other tissue com-
partments can be included (Macheras and Iliadis, 2006). For
nutrients, the dynamics of NB(t) can be described by the
following differential equation:

VB
dNB tð Þ
dt

=kaGNG tð Þ#VBkaBNB tð Þ (4)

with given initial conditions for both equations. The toxin
equation means that the rate of change of the total amount of
toxin in the blood (i.e. phytochemical exposure in the blood,
Figure 2) equals the amount of toxin absorbed from the gut
compartment into the blood minus the amount of toxin

(a) (b)

(c)

Figure 2 Example of concentrations of toxic phytochemicals ([Toxin],
toxin exposure) resulting from food intake in gut compartments (a) and
blood (b) predicted from physiologically based models that translate to
changes in assimilated energy (c) for a theoretical vertebrate herbivore
that has high (solid line) and low (dashed line) efficiency of digestion and
metabolism of energy from ingested food (see Table 1 for parameter
definitions). Specifically, the solid line represents the scenario for a
specialized herbivore with relatively high tolerance to a given toxic
phytochemical that has specialized molecular mechanisms that limit
absorption (kaG = 0.01) and maximize metabolism in the gut by both
herbivore and microbes (kmG = 0.05) and in the liver of the herbivore
(kmL = 0.1). The dashed line represents the scenario for a generalized
herbivore with relatively low tolerance to the same toxic phytochemical
that has generalized molecular mechanisms resulting in relatively higher
absorption rates (kaG = 0.03) and slower metabolism in the gut (kmG =
0.05) and liver (kmL = 0.05). Other parameter values are constant: G0
and B0= 20, V= 1 (equations (1) to (4)). Efficiency of digestion (e.g.
microbial function) and energy metabolism in the cells (e.g. mitochondrial
metabolism) are dependent on [Toxin] and mediate assimilated energy
for animals used to determine body mass.
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metabolized by the liver or distributed into other compart-
ments. For nutrients, the rate of change of the total amount of
nutrient in the blood is the amount of nutrient absorbed from
the gut compartment into the blood minus the uptake rate of
nutrient from the blood into tissue compartments where it is
used for cellular metabolism. If the animal is in a deficit for a
particular nutrient, which means that the value of NB (equa-
tion (4)) is too low, the equation can be modified to account
for the additional amount of nutrient generated endogenously
by the liver or other body compartments (e.g. glucose, lipids;
Schultz et al., 2015; Yu et al., 2016).

Predicting change in nutritional resources
Phytochemical exposure in the gut or blood estimated from
PBMs can be used to predict changes in the availability of
nutritional resources required for herbivores to gain body
mass (Figure 3). In the simplest scenario, I(t) (food intake) is
decided by the following:

I tð Þ= ≥
Pmax#TBðtÞ

Pmax
I0; ifTB tð Þ≦ Pmax

0; ifTB tð Þ> Pmax

!
(5)

where, Pmax is the maximum phytochemical concentration an
herbivore can tolerate. The term I0 the intake of food by an
herbivore without toxin or that does not contain nutrients in
excess of requirements whose value may be taken as the
ratio of the bite size of food and the time used to take this
bite. The novel component in our initial PBM is that we allow
food intake of an herbivore to be instantaneously influenced
by concentration of toxic and nutritional phytochemicals that

are in excess of what herbivores can tolerate. Several studies
demonstrate upper limits, thresholds or rules of compromise
for single or interacting phytochemicals (Sorensen et al.,
2005b and 2005a; Felton et al., 2009; Raubenheimer et al.,
2009 and 2014; Torregrossa and Dearing, 2009; Rothman
et al., 2011; Frye et al., 2013; Solon-Biet et al., 2014; Camp
et al., 2015b). However, we recognize that few thresholds
are absolute and estimates of Pmax must be determined
based on specific genetic, physiological, behavioral and
environmental conditions (see Supplementary Material S1).
Parameters estimated from PBMs could help explain the
physiological conditions that influence thresholds and nutri-
tional compromises observed within and among species (see
Supplementary Material S2).
We present a simplified example of how the nutritional

currency of energy (E) needed for mass gain can be influ-
enced by toxin exposure estimated from PBMs (Figure 2). We
let E+ (t) denote the energy intake at time t. The energy
intake from food is decided by how much food is consumed,
the concentration of toxin in food, and the toxin-dependent
changes in digestive and metabolic function that converts
food into assimilated energy. We assume the energy intake
at time t is defined as:

E + tð Þ= keB
1 +qTBðtÞ

kdG
1 +dTG tð Þ

ð1#pÞIðtÞ (6)

where kdG is the digestive efficiency of nutrients in food
without toxins in the gut, which is decreased by higher toxin
concentrations in the gut (TG(t)) (Robbins et al., 1991; Kohl

Table 1 Definition of parameters used in models to predict physiological responses to the intake of phytochemicals by vertebrate herbivores

Symbols Definition Units

Variables
TG(t) The amount of toxic phytochemical in the gut at time t Mass
NG(t) The amount of nutritional phytochemical in the gut at time t Mass
TB(t) The concentration of toxic phytochemical in the blood Mass/volume
NB(t) The concentration of nutritional phytochemical in the blood Mass/volume
I(t) The food intake of an herbivore at time t Mass
E(t) The assimilated energy Energy

Parameters
p The concentration of toxic phytochemical consumed in food Mass
r The proportion of the nutrient, which requires digestion or other modification before absorption ———————

kmG The rate of phytochemical metabolized (for toxins) or digested (for nutrients) by both host and microbial
enzymes in the gut before absorption

1/time

kaG The absorption rate of the phytochemical from the gut compartment into the blood 1/time
VB The total volume of blood Volume
kmL The rate of toxin metabolized by drug metabolizing enzymes in the liver of the host 1/time
kaB The absorption rate, or uptake, of the phytochemical from the blood compartment into tissues 1/time
Pmax The maximum phytochemical concentration an herbivore can tolerate Mass/volume
I0 The intake of food by an herbivore without toxin Mass
kdG The digestive efficiency of nutrients in food without toxins in the gut ———————

keB The energy (or other nutrient) metabolized from food without toxins Energy/mass of food
without toxins

d Scaling parameter measuring the impact of toxins on the digestive efficiency 1/mass
q Scaling parameter measuring the impact of toxins on the energy metabolized from food Volume/mass
a The energy required to metabolize and eliminate each unit of toxin from the body Energy/mass toxins
E0 Energy allocated to maintain basal metabolic rate Energy
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et al., 2015) with a scaling parameter d. keB is the energy (or
other nutrient) metabolized from food without toxins in the
blood, which is decreased by higher toxin concentrations in
the blood (TB(t)) (e.g. Forbey et al., 2011) with a scaling
parameter q.
The rate of change of total assimilated energy E(t), or net

energy assimilated, equals the difference between energy
intake E+ (t) and the sum of: energy used to eliminate the
toxins (before and after absorption), energy lost due to toxin-
dependent reduction in digestive efficiency in the gut (Rob-
bins et al., 1991; Kohl et al., 2015), toxin-dependent reduc-
tion in energy metabolism in cells (Forbey et al., 2011), and
energy allocated to maintain basal metabolic rate (E0). Net
energy assimilated is shown by the equation:

dE tð Þ
dt

= E + tð Þ#aVBkmLTB tð Þ#E0 (7)

The second term on the right side of the equation
(aVBkmLTBðtÞÞ is the loss of endogenous energy and a is
the energy required to metabolize and eliminate each unit of
toxin from the body. Endogenous loss of energy (or other
nutrient currencies) could arise from increased metabolic
costs above basal metabolism (Bozinovic and Novoa, 1997;
Boyle and Dearing, 2003; McLister et al., 2004) or loss of
endogenous substrates, such as glucose in the form of glu-
curonic acid conjugates, required for detoxification

(Guglielmo et al., 1996; Sorensen et al., 2005b; Marsh et al.,
2006; Au et al., 2013; Parikh et al., 2017).

Predicting change in body mass
From the available energy E(t), we can predict relative toxin-
dependent changes in body mass that determine demo-
graphic rates. In some cases, we know the energetic costs
associated with the intake of toxic plants can result in loss of
body mass (Guglielmo et al., 1996; Sorensen et al., 2005b).
As such, we predict smaller body mass is associated with
lower assimilated energy predicted from PBMs when a given
animal is consuming toxic phytochemicals (Figure 3). While
the initial physiological models we present focus on energy,
any nutritional currency that is known to change body mass
or other demographic parameters could be modeled with
these equations and then integrated into population models.

Predicting population-level responses to phytochemicals
For physiological predictions, we have relied on human bio-
medical insights used to predict individual responses to
specific doses of phytochemicals (e.g. personalized medicine,
Alyass et al., 2015; Aarnoutse et al., 2017). However, the
ultimate measure of whether phytochemical exposure and
resultant changes in physiological function associated with
foraging matter for ecology, evolution and conservation of
wildlife is whether variations in these parameters change
individual fitness and, ultimately, population growth rates.
There is an extensive and sustained effort to model the links
among foraging behavior, physiology and demography (e.-
g. Kooijman and Metz, 1984; Moen et al., 1997; Nisbet et al.,
2000; Wikelski and Cooke, 2006). The most salient challenge
remaining in this context is to build models that are struc-
tured in ways that make an insightful connection between
physiology and demography, yet are estimable via statistical
analysis of available data. The DEB growth model, or
Kooijman–Metz model (Kooijman and Metz, 1984), offers
one approach where physiological data from individuals
(e.g. body size) is used to describe growth and reproduction
parameters that predict population dynamics (Smallegange
et al., 2017). The application of DEB models in the field of
ecotoxicology demonstrate how energetic responses to
exposure to environmental toxins within individuals predict
population changes (Kooijman and Metz, 1984; Jager et al.,
2014; Desforges et al., 2017). In addition, recent agent-
based models (ABMs) demonstrate how energy budgets of
individual organisms can be used to predict population-level
responses to food availability (Sibly et al., 2013).
Despite these well-established theories and modeling

advances, there remains a mechanistic gap between knowl-
edge of the phytochemicals consumed by herbivores and the
energetic consequences used in DEB models that lead to
changes in demographic rates. One major complication in
establishing physiology-dependent links between foraging,
energetics and demographics is that nutritional currencies do
not act in isolation (Felton et al., 2018). Even when devoid of
toxin or excess nutrients, intake and thus nutritional balance
and changes in body mass are influenced not only by intake

(a) (b)

Figure 3 Example of how estimated concentrations of toxic
phytochemicals ([Toxin], toxin exposure) resulting from food intake
influences body mass through changes in nutrient assimilation (digested
and metabolized) in a theoretical vertebrate herbivore predicted by
physiologically based models (see Table 1 for parameter definitions).
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rates, but also by synergies among simultaneously ingested
foods. For example, dietary protein can interact with toxins
to influence body mass (Au et al., 2013) while tannins can
reduce digestion and metabolism of protein (DeGabriel et al.,
2008) thereby reducing reproductive success (DeGabriel
et al., 2009). These types of interactions can be captured
through estimates of Pmax (maximum phytochemical con-
centration, equation (5)) or adjusting scaling parameters d
and q to account for known changes in the efficiency of
digestion and metabolism (equation (6)), respectively, that
are explicitly dependent on Pmax. Estimated exposure to each
individual phytochemical consumed from PBMs can be used
to predict interactions or identify conditions whereby an
animal may experience a systemic excess or deficit of a
nutrient to explain foraging behaviors.
While consequences of nutrient deficiencies or excess

toxins for an animal is relatively easy to understand, it is less
obvious that excess levels of nutrients can cause problems.
However, examples from wildlife show that excess amounts
of specific amino acids in food items can result in reduced
food intake (DeGabriel et al., 2002) or increased demand of
thermal energy (Soppela et al., 1992). Furthermore, in
ruminant herbivores, overingestion of non-structural carbo-
hydrates causes rumen pH to decline, potentially causing
health issues such as ruminal acidosis (Wobeser and Runge,
1975; Cynthia and Scott, 2005; Butler et al., 2008; Müller
et al., 2010). The GF is currently the only way to disentangle
the effects of nutrient deficiencies from concurrent surpluses
on imbalanced diets (Raubenheimer et al., 2005).

Physiologically based models integrated into the geometric
framework for nutrition
The PBMs we present only estimate toxin-dependent chan-
ges in nutrient balance in response to a single phytochem-
ical. Although concentrations of specific phytochemicals are
associated with loss of body mass in simplified captive
feeding trials (McLean et al., 2007; Shipley et al., 2012), our
described PBMs do not capture the complex phytochemical
state of an individual herbivore. Much research has shown
that it is not enough to use a single nutritional proxy to
predict fitness (Simpson and Raubenheimer, 2001;
Raubenheimer et al., 2009; Rothman et al., 2011; Solon-Biet
et al., 2014; Felton et al., 2016; Simpson et al., 2017). Even
when we account for direct affects of toxic phytochemicals
on nutrient digestibility, it is the balance among nutrients
that is important for predicting fitness (Simpson and
Raubenheimer, 2001). The GF provides a framework for
using estimated exposure to nutrients in the body derived
from PBMs to predict how deficits or excess of nutrient
concentrations interact to affect fitness in individuals. The
GF takes into consideration that the mixture of many dif-
ferent nutritional currencies (energy and specific macro-
and micronutrients) interact with each other and with toxic
phytochemicals to influence food intake and resultant
fitness (Simpson and Raubenheimer, 2001 and 2012).
Outcomes of GF experiments include response surfaces
that predict fitness relative to the intake of specific

absolute intakes and ratios of multiple nutrients and
therefore capture multi-dimensional parameters of fora-
ging (Simpson and Raubenheimer, 2012).
The benefit of PBMs is that they have the potential to

reduce the residual in these response surfaces and more
accurately predict fitness outcomes. We propose that indivi-
dual physiological parameters such as gut and blood con-
centrations of interacting phytochemicals are more
functionally relevant than absolute intake of nutrients alone.
In other words, estimates of phytochemical exposure from
PBMs provide a mechanistic explanation for fitness con-
sequences relative to observed intake of multiple nutrients.
As a simplified example, take two individual herbivores
(1 and 2) that consume the same amount of plant material
with a known concentration of a toxic phytochemical
that inhibits assimilation of an essential nutrient in a
concentration-dependent manner (Figure 4). Subject 1 is a
specialized herbivore with physiological mechanisms that
limit absorption and maximize metabolism of the toxin
resulting in relatively low systemic toxin exposure compared
to subject 2 (Figures 2 and 4a). In this scenario, subject 2 is
exposed to higher concentrations of the toxin and therefore
assimilates a lower concentration of the essential nutrient in
the body than subject 1 (Figure 4b). Assuming both subjects
have similar requirements for the nutrient, subject 2 must
consume higher absolute amounts of the nutrient than sub-
ject 1 due to lower nutrient assimilation (Figure 4c). Animals
not able to compensate for toxin-dependent deficits in
assimilation efficiency of nutrients by increasing intake are
predicted to have reduced fitness. Based on the GF, the
theoretical response surface that includes both of these
subjects would show variation in the absolute intake of this
nutrient associated with maximum fitness (x-axis in
Figure 4d). We propose that estimates of the concentration
of the nutrient in the body generated from PBMs would
reduce variation along this nutritional axis and more pre-
cisely correlate with fitness outcomes (Figure 4e) than use of
absolute intake alone. This approach could be repeated for
any number of nutrients included in the GF using physiolo-
gical predictions derived from PBMs (Figures 2 and 3). This
simplified example demonstrates how estimates of phyto-
chemical exposure offered through PBMs could provide more
mechanistically accurate predictions of fitness in individual
herbivores within the GF.

Physiologically based models integrated into demographic
models
While including more accurate fitness outcomes from phy-
siological exposure of nutrients into the GF is ideal for pre-
dicting population consequences, testing model predictions
of fitness in vertebrates is often logistically challenging.
Changes in body mass represent a realistic fitness surrogate
that can be measured in a wide range of vertebrates and then
used to develop and test demographic models that predict
population-level outcomes of consuming phytochemicals.
Body mass is dependent on mechanisms that increase or
decrease physiological exposure to nutrients that can create
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nutritional imbalances (Simpson et al., 2003; Simpson and
Raubenheimer, 2005; Solon-Biet et al., 2014; Sorensen et al.,
2005b and 2008). Quantifying physiology-dependent nutri-
ent concentrations in the body and resultant changes in body
mass of individuals within a population will get ecologists
closer to accurately predicting demographic consequences
for vertebrates. Nutrient concentrations in the body can be
estimated from PBMs (Figures 2 and 3) parameterized with
physiological data from in vitro and in vivo assays (described
in Supplementary Material S1) and body mass can be mea-
sured directly from whole animals or indirectly from fecal
pellet size in some species (Coe and Carr, 1983; Smith et al.,
1995; Reilly, 2002; Morden et al., 2011). Numerous studies
have demonstrated that body size predicts the demography

of long-lived animals, meaning that larger individuals tend to
have better growth, survival and reproduction than smaller
individuals (Rees et al., 2014; Barneche et al., 2018). Because
toxin exposure can influence body size through changes in
available energy both in real organisms (Sorensen et al.,
2005b and 2005c) and in the above physiological models, we
propose that size-structured population models (sensu Rees
et al., 2014) can translate toxin-dependent changes in
assimilated nutrients and body mass in individual animals to
changes in population growth rates.
Integral projection models (IPMs) are an example of size-

structured population models that are widely used to quan-
tify evolutionary fitness, forecast impacts of wildlife man-
agement and understand why population dynamics vary
between geographically separated populations (Metcalf
et al., 2003; Coulson et al., 2011; Smallegange et al., 2017).
Smallegange et al. (2017) demonstrated that DEB theory can
be incorporated into IPMs and that predictions from the
resultant DEB-IPM model closely matched empirical data on
population growth rate. However, incorporating the physio-
logical details of herbivory in IPMs remains a major research
gap. To bridge this gap, we propose developing IPMs that
predict demographic rates as a function of both body mass
and phytochemical exposure (Figure 5). By including phyto-
chemical exposure along with body mass, we can better
account for the potentially interacting consequences of
phytochemicals on energy balance as well as any other
nutritional currency that influences demographic parameters
of animals (e.g. fat or protein composition; Parker et al.,
2009). Specifically, IPMs can be fitted with empirically
derived physiological parameters to predict body mass or
other fitness parameters (e.g. survival or number of off-
spring). The analytical tractability of IPMs leads to a suite of
demographic metrics, including long- and short-term popu-
lation growth rate, sensitivity of population growth rate to
environmental conditions, and stable size distribution, that
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Figure 5 Example of demographic changes based on body mass relative
toxin exposure of individual animals predicted from integral projection
models. Toxin exposure and body mass are predicted from physiologically
based models (Figures 2 and 3) or measured directly from individuals.
Body mass is one of several surrogates of fitness that could be used.

Figure 4 Example showing how predicted concentrations of toxic
phytochemicals ([Toxin], toxin exposure, (a)) and toxin-dependent
changes in concentrations of an essential nutrient ([Nutrient X], nutrient
exposure, (b)) from physiologically based models influence interpretation
of response surfaces (red is greater fitness) predicted from the geometric
framework (d, e) for a theoretical vertebrate herbivore subject (1) that
has physiological mechanisms that limit absorption and maximize
metabolism of the toxin more than another theoretical herbivore subject
(2). Both herbivores consume the same amount of a toxic phytochemicals
and nutrients and the toxin reduces concentrations of Nutrient X in the
body in a concentration-dependent manner (b). Subject (2) is exposed to
higher concentrations of the toxin and lower concentrations of the
essential nutrient in the body (b). To maintain concentrations of Nutrient
X (dashed line) required for maintenance (below excess and above
deficit), subject (2) must consume higher amounts of the nutrient than
subject (1) (c). The theoretical response surface based on absolute intake
of Nutrient X generated from the geometric framework would show
variation in the absolute intake of Nutrient X associated with maximum
fitness (d). In contrast, estimates of the concentration of the nutrient in
the body generated from physiologically based models reduce variation
along the Nutrient X axis (e) compared to using absolute intake because
both subjects are consuming food to reach an optimal body
concentration of nutrient X.
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can be easily compared across species and study sites (Rees
et al., 2014). The cost of IPMS is that they may be limited in
the level of complexity they can handle.
Agent-based models provide an additional modeling fra-

mework that can scale-up individual-level variation to
population dynamics. Moreover, ABMs can incorporate
complex data such as variable genotypes, physiological traits
and environmental conditions (Golestani et al., 2012; Sibly
et al., 2013; Khater et al., 2016). The ABMs represent indi-
viduals within a virtual environment that, based on their
individual traits, exhibit differences in growth, survival and
reproduction. The ABMs allow researchers to manipulate
virtual genotypes (host and microbiome) or physiological
functions that would not be feasible in the field (Torrens,
2010; Caughlin et al., 2014 and 2015; Ruktanonchai et al.,
2016; Pauli et al., 2017). Virtual individuals can be assigned
genome- and phytochemical-dependent physiological
responses that are based on empirical data established from
in vitro and in vivo experiments (see Supplementary Material
S1). When simulated across multiple generations, even sub-
tle differences in individual traits (genomes) and interactions
with the environment, such as energetic responses to inter-
acting concentrations of toxins and nutrients predicted from
PBMs, can result in emergent patterns of population persis-
tence and trait composition (Grimm et al., 2005). A potential
tradeoff of more complex ABMs relative to analytically
tractable models (e.g. IPMs) is a lack of generalizability
across study systems (Morris and Doak, 2002).
Integrating complex physiological and demographic data

into any demographic model presents a challenge because
data often comes from disparate sources. Many wildlife
monitoring programs offer extensive data on population time
series, but rarely collect information on phytochemicals in
the diets or physiological data for these populations. Instead,
physiological data are most often limited to experimental
trials on whole individuals or derived from in vitro assays (see
Supplementary Material S1). Physiological data can also be
derived from new databases (Daina et al., 2017) that predict
the physiological activity of a vast array of metabolites from
plants and the excreta of animals based on the structure of
the metabolite (Servello and Schneider, 2000; Sauvé and
Côté, 2006; Van Duynhoven et al., 2011; Tay-Sontheimer
et al., 2014; Parikh et al., 2017). As such, a gap remains
between observational data from populations and physiolo-
gical data from individuals.
Hierarchical Bayesian methods present a way to integrate

disparate data sources to model population dynamics, while
accounting for imperfect detection (Zipkin and Saunders,
2018). For example, Bayesian models could integrate varia-
tion in individual responses to phytochemicals predicted
from PBMs (Figures 2 and 3) or predicted from known
metabolite structures (Daina et al., 2017), predicted fitness
metrics estimated from response surfaces generated from the
GF (Figure 4), experimental data from animals in captivity
(e.g. body size) or obtained from captured animals in the
field, as well as long-term data on population density and
abundance of herbivore populations. Hierarchical Bayesian

models can be applied to fit both IPMs and ABMs (Caughlin
et al., 2015; Elderd and Miller, 2016). Once the joint models
(i.e. PBMs within the GF coupled with IPMs or ABMs) are fit
to data, sensitivity analysis (Saltelli et al., 2006) presents a
way to evaluate the demographic importance of physiologi-
cal variation. This analysis would enable researchers to
quantify how variability in the input of phytochemical
exposure (from PBMs), available energy, body mass and fit-
ness metrics translates into output for demographic models
(population growth rate). The sensitivity analysis can directly
quantify which physiology-dependent parameters best
explain population growth rates.

Test and revise models
While testing physiology-dependent predictions of popula-
tion dynamics in long-lived species is logistically challenging,
we identify a few options for testing and improving initial
models.

In vitro manipulation to test physiologically based models
A variety of modifications to in vitro assays can be used to
parameterize PBMs (see Supplementary Material S1) and test
predictions of those models in specific study organisms (see
Supplementary Material S2). Both host enzymes and micro-
bial communities can be exposed in vitro to different com-
binations of phytochemicals that vary in concentration and
composition. For example, Kriszan et al. (2018) quantified
changes in efficiency of digestion (fermentation) by testing
rumen liquid from free-ranging moose (a browsing species)
and dairy cows (a grazing species) on a combination of
spring and summer foods commonly eaten by moose in
Northern Sweden. The naturally growing plants differed in
their nutrient and toxin concentrations. The assay showed
that fermentation efficiency is host-specific and related to the
composition of the rumen microbial community. Moreover,
the pattern was in agreement with the evolutionary adap-
tations related to feeding habitats and morphophysiological
differences between browsers and grazers. Results such as
these can be used to identify which phytochemical combi-
nations, microbes and host enzyme activity minimize or
maximize exposure to phytochemicals (fast rates of meta-
bolism by microbes) and maximize or minimize physiological
function (Figure 1).

In vivo manipulation to test demographic models
Model predictions can also be tested by in vivo manipulation
of the molecular mechanisms regulating phytochemical
exposure. Host and/or microbiome enzyme activity can be
manipulated through drug–drug interaction assays. A num-
ber of phytochemicals naturally consumed by herbivores are
known to inhibit transporters and metabolizing enzymes in
humans and cause altered systemic exposure to medication
(Chung et al., 2007; Androutsopoulos et al., 2010; Chen
et al., 2010). For example, phytochemical exposure and
demographic responses of populations can be assessed by
varying phytochemical concentrations of food given to ani-
mals with and without co-administration of inducers (e.g.
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kaempferol, Chung et al., 2007) or inhibitors (e.g. flavonoids,
Androutsopoulos et al., 2010) of transporters and metabo-
lizing enzymes. In addition, tolerance to phytochemicals can
be altered by pairing variation in dietary phytochemicals with
manipulation of microbial communities of the gut (Kohl
et al., 2014 and 2016b). The gut microbiome can be
manipulated by providing herbivores with food of varying
phytochemistry that is mixed with feces or rumen fluid col-
lected from other herbivores with specific physiological
mechanisms of tolerance to specific phytochemicals (Jones
and Megarrity, 1986; Pratchett et al., 1991; Kohl et al.,
2016b; Griffith et al., 2017).
We suggest that coupling the manipulation of phyto-

chemicals with the manipulation of host and microboime
function would allow researchers to test model-predicted
changes in a number of physiological and demographic
parameters. Researchers could observe changes in intake of
food of known phytochemistry through direct observations
(McShea and Schwede, 1993; Parker et al., 1996; Felton
et al., 2009; Johnson et al., 2013) or animal-borne video
(Hays, 2015; Garnick et al., 2018). Fecal collections can be
used to monitor changes in microbial communities from
metagenomic studies and phytochemical exposure in the gut
from metabolomic studies. Phytochemical exposure and
nutritional indices could be further assessed through con-
centrations of metabolites in excreta (Servello and Schneider,
2000; Sauvé and Côté, 2006; Van Duynhoven et al., 2011;
Tay-Sontheimer et al., 2014; Parikh et al., 2017) and taking
direct or indirect measures of changes in body mass. Fur-
thermore, researchers could partner with federal and state
wildlife agencies to monitor relationships among physiolo-
gical function and demographics in free-ranging wild and
domestic vertebrate herbivores. State and federal agencies
often collect long-term demographic data for game species
and routinely monitor body mass, survival and reproductive
success of individuals (Bishop et al., 2009; De Jager and
Pastor, 2009; Revermann et al., 2012; Zhao et al., 2013;
Moss et al., 2014; Coates et al., 2015; DeAngelis et al., 2015;
DeMay et al., 2017; Fauchald et al., 2017). These demo-
graphic parameters could be coupled with the collection of
excreta from animals they handle or track to quantify bio-
markers of phytochemical exposure and consequences. For
example, the moose (Alces alces) population in Sweden has
been monitored in terms of relative density (number of
individuals shot) since the mid-1900s. Since then, data on
reproductive output (e.g. number of calves/adult female) and
condition (carcass weights) of moose populations have been
added to the official national database. There are also
available data on the population trends of other species of
herbivorous game in Sweden, such as roe deer (Capreolus
capreolus), fallow deer (Dama dama), the European hare
(Lepus timidus) and beaver (Castor fiber). This type of mon-
itoring effort should begin to include collection of excreta
from individuals that are handled or are collected from the
habitat to quantify phytochemical exposure and physiologi-
cal responses to those phytochemicals. In addition,
researchers are encouraged to link physiological and

demographic responses to the genetic expression and activ-
ity of host and microbial enzymes responsible for absorption
and metabolism of ingested phytochemicals and digestive
function (see Supplementary Material S1). While collection of
tissues may be problematic in some species, this effort could
be aided by collaborations with hunters who can offer access
to tissues of game species for coupled genomic and physio-
logical analysis.

Conclusions

Two key advances are needed to increase our capacity to
predict variable demographic outcomes in vertebrate herbi-
vores from complex diets. The first is to identify mechanistic
responses to diets that are common across individuals in
populations. For example, any animal that consumes and
absorbs toxic alkaloids from plants has a high degree of
probability for toxicosis (Cheeke, 1989; Panter et al., 1999). The
second is to identify mechanisms that explain why individuals
within populations differ in their molecular expression, phy-
siological processing of phytochemicals and physiological
responses to phytochemical exposure. For example, why one
individual has a higher intake of a given nutrient, faster rate of
detoxification for a given toxin, or lower sensitivity to cellular
toxicity than another individual, to such an extent that it results
in differences in ecological or evolutionary dietary specializa-
tion (Shipley et al., 2009). The PBMs described here can help
increase our capacity to make initial physiological predictions
about variable demographic outcomes associated with the
degree of dietary specialization.
The immediate challenge for mechanistic models of ecol-

ogy is to estimate physiological parameters among indivi-
duals, populations and species that differ in foraging
strategies. Estimates of many physiological parameters can
be independently assessed using a number of in vitro and
in vivo studies (see examples in Supplementary Material S1).
We stress that environmental conditions must be considered
in both experimental studies, field observations, and in
model parameterization and outputs. Ambient temperature
can change nutritional demands of herbivores (e.g. meta-
bolic costs, Hillebrand et al., 2009; Smith-Ramesh et al.,
2017; Hristov et al., 2018) and the toxicity of ingested phy-
tochemicals (Dearing, 2013; Connors et al., 2017; Beale
et al., 2018). As such, estimating biologically relevant phy-
siological parameters requires knowledge of phytochemical
intake within an environmental context, which is always
challenging in wild herbivores. Inspiration can be drawn from
primate (Felton et al., 2009; Johnson et al., 2013) and
ungulate (McShea and Schwede, 1993; Parker et al., 1996)
research where the ability to habituate wild individuals to the
presence of researchers provides the opportunity to deter-
mine detailed dietary intake from free-ranging animals. In
addition, there are emerging opportunities for researchers to
quantify intake of food through observations of animal-
borne video (Hays, 2015; Garnick et al., 2018) that could be
coupled with remote sensors that detect forage species and
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phytochemical concentrations (Stolter et al., 2006; Yule et al.,
2015; Lim et al., 2017) as well as environmental conditions
(Faye et al., 2016; Cristóbal et al., 2018) at the same spatial and
temporal scales. The next challenge is to then develop
mechanistic models that can accommodate known concentra-
tions of phytochemicals in body compartments (PBMs), and
resulting fitness consequences (GF), as well as genetic and
metagenomic data (e.g. Zhao et al., 2013; Alyass et al., 2015;
Simpson et al., 2017) and environmental conditions to validate
how individuals and populations will respond to ingested phy-
tochemicals under different climate scenarios.
There are no studies to our knowledge, outside of phar-

macogenomic work in biomedical model organisms (Peters
and McLeod, 2008; Santos et al., 2018), that demonstrate
how modeling phytochemical exposure and physiological
function can predict individual responses to phytochemicals
and help manage population dynamics. The described PBMs
could help fill that gap. The coupling of a PBM, the GF and
demographic models, along with advanced technology that
allow us to better estimate behavioral, physiological and
environmental parameters will increase our ability to link
intake of phytochemicals by herbivores to demographic
consequences. The genomic, metabolomic and modeling
advances made in biomedicine have increased the predictive
power and management tools needed to increase the health
of humans. Ecologists should draw on these tools along with
investment by state and federal agencies to monitor demo-
graphics of wild herbivores and the environment to better
understand and manage the physiological mechanisms
driving existing or desired demographic trends.
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