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The gastrointestinal tract is a chemically complex mixture of
macromolecules, electrolytes, and enzymes that interact to supply
nutrients to the animal. However, certain physicochemical
characteristics, such as pH, can alter digestive processes, including
the efciency of digestive enzymes (CornishBowden, '95),
nutrient transporters (Thwaites and Anderson, 2007), and
microbial fermentation (Ere et al., '82). Therefore, vertebrates
tightly regulate the pH of their gastrointestinal tract through the
secretion of HCl from the stomach, and bicarbonate from the
pancreas, intestine, and cecum (Schulz, '80; Hopfer and
Liedtke, '87; Caneld, '91; Stevens and Hume, '95).
However, variation in gastrointestinal anatomy may alter

the pH of gut regions. For example, some species have gastric
glands spread through the entirety of the stomach, while others
have them reduced to the distal portion (Kararli, '95). Rodents tend
to follow the latter condition, yet still exhibit variation in stomach
anatomy. Some rodents, such as laboratory mice, exhibit a

unilocular stomach, where the stomach exists as a single chamber
(Stevens and Hume, '95). Others, such as New World mice
(Peromyscus spp.), woodrats (Neotoma spp.), and voles (Microtus
spp.) have a bilocular stomach, where a deep invagination near the
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esophageal opening slightly separates two regions of the stomach,
with the proximal segment extending above the esophageal
opening (Carleton, '73; Stevens and Hume, '95). Although the
morphology of the bilocular stomach anatomy in rodents was
described over a century ago, its function remains unknown. It has
long been proposed that the separation might allow for growth of
symbiotic microbes in the proximal chamber (Toepfer, 1891).
However, the chemical environments of these chambers have not
been investigated in rodents with bilocular stomachs with respect
to their suitability for microbial growth. This anatomy may aid in
separating the proximal contents of the stomach from the gastric
stomach.
Diet is another factor that may inuence gastrointestinal pH.

Rodents exhibit a wide range of dietary habits, with herbivory
having evolved multiple times independently (Samuels, 2009).
Dietary ber increases pancreatic secretion of bicarbonate in a
number of mammals, including rodents (StockDamge et al., '83;
Sommer and Kasper, '84; Zebrowska and Low, '87). Additionally,
microbes throughout the gut can produce shortchain fatty acids
from easily fermentable carbohydrates, which may locally
lower pH (Lupton et al., '88; Yoshioka et al., '94). Thus, diet is
likely to alter the gastrointestinal pH of rodents.
Here, we investigated how variation in stomach anatomy and

diet might inuence gastrointestinal pH. We predicted that species
with bilocular stomachs would exhibit different pH values
between stomach chambers due to a more enhanced anatomical
separation. Additionally we predicted that dietary ber would
increase the pH in the gastrointestinal tract. To test these
predictions, we maintained several species of rodents with
varying stomach anatomy on both high ber and low ber diets,
and measured the pH of various gut regions.

MATERIALS AND METHODS

Animals
We conducted diet trials on one species of rodent with unilocular
stomachs, the house mouse (Mus musculus), and two species with
bilocular stomachs [deer mouse (Peromyscus maniculatus); desert
woodrat (Neotoma lepida)] (Carleton, '73). To investigate the effect
of diet on gut pH, individuals of all three species were fed either a
high ber diet (Harlan Teklad 2031, Madison, WI, USA), or a low
ber diet (Harlan Teklad 2018), ad libitum for 7 days. Diets are
meant to replicate “herbivorous” and “omnivorous” diets,
respectively. Though the largest difference between the diets is
the content of ber and easily digestible carbohydrates, they differ
in other nutrients as well, namely the low ber diet contains
slightly more protein and fat (Table 1). House mice (n  4/diet)
originated from captive, outbred individuals under IACUC #10
07012. Deer mice (n  4/diet) were captive bred individuals under
IACUC#1101007. Desert woodrats (n  3/diet) were collected in
nature (Lytle Ranch, Washington Co., UT, USA) and maintained in
the laboratory under IACUC #1001013. All animals used were

adults of both sexes. Food intake in this experiment was not
measured.
We also collected samples from two species without conducting

diet treatments. Samples were collected from montane voles
(Microtus montanus), which have bilocular stomachs (Stevens and
Hume, '95) and common spiny mice (Acomys cahirinus). Previous
reports on the stomach anatomy of a closely related species (A.
spinosissimus) show varying descriptions (Perrin and Curtis, '80;
Boozaier, 2012), and thus we aimed to document the stomach
anatomy of A. cahirinus. Voles (n  3) were wildcaught
individuals, dissected in the eld, from Big Creek Canyon, Lander
Co., NV, USA, collected under IACUC #0902004. Traps were
baited with just a few seeds and placed on obvious runways of
voles. Common spinymice (n  3) were from breeding colonies at
the Department of Biology and Environment at the University of
Haifa, Oranim, and fed ad libitum rodent chow (Koffolk 19510, Tel
Aviv, Israel) and whole, eshy fruit of Ochradenus baccatus. The
experimental protocols were approved by the Committee of
Animal Experimentation of the University of Haifa (permit
number 096/08).
Individuals of all species were euthanized under CO2 and

immediately dissected. All animals were nocturnal and were
dissected within 5 hrs of the beginning of the daylight cycle, and
thus had likely completed daily feeding recently. However, voles
were an exception as they were dissected directly from traps with
limited food, and so may have consumed very little food during
the evening. Complete contents of the proximal stomach, distal
stomach, small intestine, and cecum were collected, frozen, and
transported to the University of Utah. Large intestinal pH was not
measured. Gastrointestinal contents were thawed to room
temperature, and pH was measured using an Omega Soil pH
electrode (PHH200), which compensates for temperature.

Statistics
For those species in which a diet comparison was conducted
(house mouse, deer mouse, and woodrat), we used a repeated
measures ANOVA model with species, diet, and gut region as
variables. Data were tested for sphericity, and if any violations
occurred, Huynd–Feldt corrections were used to compare

Table 1. Macronutrient composition of experimental diets (% dry
matter).

High fibera Low fiberb

Crude fiber 21.8 3.5
Crude protein 14.8 18.6
Fat 2.3 6.2
Ash 8.3 5.3
aComposed primarily of alfalfa, soybean hulls, and oats.bComposed
primarily of wheat and corn.
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treatments. To test whether pH varied by stomach compartment,
we conducted posthoc, paired ttests within each species.
Additionally, we tested for diet effects of specic gut region pH
values by conducting posthoc ttests on each gut region, within
each species. A Bonferroni corrected value of a  0.025 was used
for all posthoc tests. For species that lacked a diet treatment
(spiny mouse, vole), we simply conducted paired ttests between
the pH values of stomach regions.

RESULTS
Upon dissection, we learned that Acomys cahirinus exhibits
bilocular stomach anatomy (Fig. 1).
Thedatausedin therepeatedmeasuresANOVAmodelviolated the

assumption of sphericity (Mauchly's Test of Sphericity, P  0.047),
and so degrees of freedom were modied by a Huynd–Feldt
correctionof  0.98 to determinenalPvalues. The gut pHvalues
differed between species, and the pH of contents differed
signicantly by gut region (Table 2, Fig. 2). The pH of gut regions
also varied across species, and gut regions responded differently to
diet treatments (Table2,Fig.2). SpecicpHvalues for all regionsand
treatments can be found in Supplementary Table 1.

Posthoc tests investigating regional differences in pH within
the stomach revealed the importance of anatomy. Paired ttests for
all species with bilocular stomachs (deer mouse, woodrat, vole,
and spiny mouse) showed signicant differences between the
proximal and gastric stomach pH (P  0.002 for all species, Figs. 2
and 3). In contrast, the only species with a unilocular stomach
(house mouse), showed no differences between proximal and
distal stomach pH (P  0.58, Fig. 2).
Posthoc tests investigating the effect of diet on gut pH revealed

that the only region that differed was the small intestine. The high
ber diet signicantly increased small intestinal pH in the house
mouse (P  0.005) and deer mouse (P  0.006) and showed a
trend for increased pH in the woodrat (P  0.049, Fig. 2). All other

Figure 1. Stomach from a common spiny mouse (Acomys
cahirinus) showing bilocular anatomy. “P” marks the proximal
chamber, “G” marks the gastric chamber. Scale bar shows mm.

Table 2. Statistical results from repeated measures ANOVA of
gastrointestinal pH.

Effect F df P

Species 9.54 2,16 0.0019
Diet 2.33 1,16 0.15
Species  diet 1.66 2,16 0.22
Gut regiona 831.45 2.9,47.3 <0.0001
Gut region  speciesa 28.48 5.9,47.3 <0.0001
Gut region  dieta 3.25 2.9,47.3 0.031
Gut region  species  dieta 1.71 5.9,47.3 0.13

Signicant differences are in bold.
aDegrees of freedom have been transformed with Huynd–Feldt correction.

Figure 2. Mean  SEM pH of gut regions from rodents in diet
experiment. n  3–4 per group. Open circles represent low ber
diet, closed circles represent high ber diet. Indicates signicant
differences in pH between the proximal and gastric stomach
chambers. †Indicates signicant differences between diet treat-
ments in a given gut region.
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gut regions lacked signicant differences in pH based on diet
treatment.

DISCUSSION
We explored the gastrointestinal pH of rodents with differing
stomach anatomy fed both high and low ber diet treatments. We
found that overall gastrointestinal pH differed between species.
The results revealed that a bilocular stomach anatomy seems to
allow rodents to maintain a pH gradient between stomach
chambers. Diet seemed to have little effect on gastrointestinal pH,
as we found few differences in pH due to a high ber diet. The
exception was the small intestine, where a high ber diet caused a
more alkaline pH. Below we discuss mechanisms and possible
consequences of these ndings.
The functional signicance of bilocular stomach anatomy in

rodents was proposed over a century ago to allow growth of
symbiotic microbes in the proximal chamber (Toepfer, 1891).
Indeed, we have documented that relatively diverse microbial
community resides within this proximal chamber (Kohl and
Dearing, 2012). Our study represents the rst thorough investiga-
tion in to the stomach pH of rodents with bilocular stomachs. Here,
we report that this anatomy aids in maintenance of differential pH
between chambers. This nding is further supported when the
results herein are placed in the context of pH values from
previously studied rodents (Table 3). Rodents with bilocular

stomachs maintain a larger pH gradient between regions, and
achieve an overall lower pH in the gastric region. The only
exception is the high gastric pH of the vole, which is likely due to
the length of time since feeding in our study. Low gastric pH
facilitates digestion of protein and protection against ingested
pathogens (Giannella et al., '72; Stevens and Hume, '95), and so
bilocular stomachsmay function better in these respects compared
to unilocular stomachs. These hypotheses, though, remain to be
explored in further studies.
We found that when feeding on the high ber diet, rodents

tend to maintain an elevated small intestinal pH. Feeding on a
high ber diet increased the small intestinal pH by 0.35–0.75 pH
units, which corresponds to a roughly 2 to 5.5fold increase in
the concentration of hydrogen ions. An increase in small
intestinal pH in response to dietary ber has been documented
in cattle (Russell et al., '81). This result is unlikely to be an
artifact of the pH of the contents entering the small intestine
from the stomach, as no differences in pH based on diet were
observed in stomach contents. A larger sample size may have
allowed us to detect a difference due to the high ber diet in
other gut regions. Another possible mechanism for lower
intestinal pH could be higher microbial production of short
chain fatty acids from easily fermentable carbohydrates in the
low ber diet (Lupton et al., '88; Yoshioka et al., '94). However,
this is unlikely to be occurring as the small intestine has the
lowest microbial density (Savage, '77), and we did not observe
an effect of diet on cecal pH, where the most microbial activity
occurs. Differences in rates of coprophagy between animals fed
different diets (Franz et al., 2011) or the higher ion binding

Figure 3. Mean  SEM pH of gut regions from voles and spiny
mice. n  3 for each species. Indicates signicant differences
in pH between the proximal and gastric stomach chambers.

Table 3. Comparison of stomach pH between regions from species
with bilocular and unilocular stomachs.

Proximal stomach Gastric stomach
Bilocular species
Hamstera,b 6.9 2.9
Deer mouse 5.1 2.9
Woodrat 4.4 1.6
Spiny mouse 5.4 2.1
Vole 5.5 3.6

Unilocular species
Guinea piga,c 4.5 4.1
Rata 5.0 3.3
Mousea 4.5 3.1
Gerbila,d 5.5 3.8
Mouse 3.6 3.7

aStomach pH data from Kararli ('95).
bAnatomy assigned based on Carleton ('73).
cAnatomy assigned based on Potter et al. ('56).
dAnatomy assigned based on Naumova et al. (2011).
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capacity of dietary ber (Eastwood, '92) might also drive this
response. With these mechanisms, though, we would expect
differences in other gut regions, not only the small intestine.
Thus, rodents likely physiologically regulate the luminal
intestinal environment at high pH values. Intestinal pH is
regulated largely by secretion of bicarbonate (HCO3

) by the
pancreas and intestine (Schulz, '80; Hopfer and Liedtke, '87).
Secretion of bicarbonate is an energyrequiring, active process
(Schulz, '80). Therefore, there may be some adaptive signicance
for the increased intestinal pH exhibited by rodents consuming
high ber diets. Alterations in pH can cause differential
ionization of nutrients, enzymes, transporters, and secondary
chemicals (CornishBowden, '95; Kararli, '95; Thwaites and
Anderson, 2007). It could be that when on a high ber diet,
rodents regulate at a higher pH to yield a more benecial suite
of traits, such as selecting for optimal activity of certain
enzymes or transporters. Herbivorous species, given their
constant high ber diet, may have evolved enzymes or
transporters that work optimally at this higher pH. However,
these hypotheses, like those regarding stomach morphology,
remain to be investigated.
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