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Summary

Plant secondary metabolites (SMs) acting as defensive
chemicals in reproductive organs such as fruit tissues play

roles in both mutualistic and antagonistic interactions
between plants and seed dispersers/predators [1–5]. The

directed-deterrence hypothesis states that SMs in ripe fruits
deter seed predators but have little or no effect on seed

dispersers [6]. Indeed, studies have demonstrated that birds
are able to cope with fruit SMs whereas rodents are deterred

by them [1, 7]. However, this mechanism was only demon-
strated at the class level, i.e., between birds and mammals,

based on differences in the vanilloid receptors [7]. Here we

present experimental and behavioral data demonstrating
the use of the broad-range, class-independent ‘‘mustard oil

bomb’’ mechanism in Ochradenus baccatus fruits to force
a behavioral change at an ecological timescale, converting

rodents from seed predators to seed dispersers. This is
achieved by a unique compartmentalization of the mustard

oil bomb, causing activation of the system only upon seed
and pulp coconsumption, encouraging seed dispersal via

seed spitting by rodents. Our findings demonstrate the
power of SMs to shift the animal-plant relationship from

predation to mutualism and provide support for the
directed-deterrence hypothesis at the intraspecific level, in

addition to the interspecific level.

Results and Discussion

Glucosinolates (GLSs) are secondary metabolites (SMs) that
are found in many plant species in the order Brassicales,
including members of the Brassicaceae and Resedaceae
families [8]. Generally, intact GLSs are harmless; however,
when plant tissue is mechanically damaged, released myrosi-
nases hydrolyze the GLSs, producing mainly thiocyanates,
isothiocyanates, and/or nitriles [8, 9]. These compounds
have been shown to induce toxicological and pharmacological
effects on various organisms [9–12]. We examined ripe fruits
from a wild population ofOchradenus baccatus from southern
Israel for presence of GLSs.
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Ochradenus baccatus (Resedaceae) is a Saharo-Sindian
desert plant. Unlike most desert plants, it produces fleshy
fruits with a high water and sugar content consumed by
a wide variety of vertebrates [13, 14]. The fruit pulp is rich in
carbohydrates (85.1% 6 0.4% dry mass; all values are
means 6 SE) but low in nitrogen (2.6% 6 0.09% dry mass),
whereas the seeds are rich in protein (25% 6 0.09% dry
mass). Each stem carries tens of fruits arranged in clusters
(Figure 1C). The fruits are white berries, eachw4 mm in diam-
eter (56.8 6 3.9 mg fresh mass) and containing an average of
9.4 (6 0.5, n = 100 fruits) small black (viable) or white (inviable)
seeds (average seed fresh mass 0.7 6 0.03 mg, n = 40 fruits).
O. baccatus organs (roots, leaves, stems, and fruit pulp)
were found to be rich in GLSs. Moreover, in the fruits of
O. baccatus, we found a compartmentalization between the
GLSs, found only in the pulp (Figure 1A), and myrosinase
enzyme, found only in the seeds (Figure 1B). The interaction
of the myrosinase and GLSs during seed consumption hydro-
lyzes harmless GLSs in the pulp into toxic compounds,
a mechanism known as the ‘‘mustard oil bomb’’ (Figure 1C).
This activation of GLSs could deter seed predators but would
not affect seed dispersers because they are not likely to
damage the seeds and thus release the enzyme.
We tested the interaction betweenO. baccatus and Acomys

cahirinus (Figure 2A), a nocturnal, predominantly seed-predat-
ingmurid rodent [15], in situ. Using day/night motion-activated
cameras, we documented multiple events of A. cahirinus
climbing on O. baccatus bushes (n = 3 individuals; Movie
S1A) and carrying an entire fruit cluster away from the parent
plant (n = 3 individuals; Movie S1B). Moreover, we docu-
mented A. cahirinus consuming the fruits on the ground
between the rocks (‘‘rocky crevices’’; 8 distinct individuals,
20 fruits per individual per session on average) and orally
expelling O. baccatus seeds in the process (Movie S1C).
When fruits were placed overnight in 90 mm Petri dishes in
rocky crevices (n = 8 sites) or under O. baccatus bushes (n =
22 bushes), more seeds were left intact in the rocky crevices
compared to under the bushes (25.7% 6 14.0% versus
6.2% 6 2.7%; Mann-Whitney U = 44.5, p < 0.05), further
evidence that fruits are more likely to be moved away from
the parent plant. These are conservatively low bounds of
uneaten seeds, because we counted only seeds remaining
inside the small dishes, and the video recordings showed
that A. cahirinus may handle fruits away from the dish. Inter-
estingly, rocky crevices may also provide favorable conditions
for establishment of seedlings by blocking radiation and
increasing humidity, factors which often limit plant growth in
the desert ecosystem [14, 16]. Furthermore, compared to
seeds dispersed by birds, seeds dispersed by A. cahirinus
are more likely to remain in the wadi, which is a primary condi-
tion forO. baccatus germination success [14]. Seeds collected
from the field that had been orally expelled by A. cahirinus
germinated successfully in the laboratory (100% of all viable,
black-colored seeds [n = 22] germinated). In laboratory
experiments, 21 of 23 naive A. cahirinus individuals presented
with whole fruits ate the pulp but left 73.8% 6 7.7% of the
seeds intact, by either dropping the seeds or spitting them
(Figure 2A; Movie S2). The germination rate of these seeds
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Figure 1. Compartmentalization of Glucosinolates and the Myrosinase

Enzyme in Fruits of Ochradenus baccatus

(A) Glucosinolate (GLS) concentration in pulp (n = 8) and seeds (n = 8). Data

in (A) and (B) are presented as means 6 SE.

(B) Myrosinase activity in pulp (n = 8) and seeds (n = 8).

(C) Upon mechanical injury to seeds, GLSs are activated (hydrolyzed) by

the enzyme myrosinase, producing toxic components [8, 9].
Figure 2. Three Rodent Species Spitting Intact Seeds of Ochradenus

baccatus during Fruit Consumption

(A) Captive Acomys cahirinus (see Movie S2).

(B) Wild Acomys russatus (see Movie S3).

(C) Wild Sekeetamys calurus.
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(83.1%, n = 65 seeds treated by n = 10 A. cahirinus individuals)
did not differ from seeds that had been manually separated
from the pulp by the experimenter (90.3%, n = 31 seeds;
Z = 21.32, p = 0.18). The fruit-eating strategy of seed spitting
improved germination by more than 2-fold compared to the
reported germination rate of seeds within intact fruit [13, 14].

Other rodents, i.e., Acomys russatus (n = 4; Figure 2B; Movie
S3) and Sekeetamys calurus (n = 1; Figure 2C), were also
observed spitting the seeds while consuming O. baccatus
fruits in the field, suggesting that this behavior is not limited
to one species. Although seed dispersal via seed spitting
has been shown in other mammalian taxa [17, 18], the present
study is to our knowledge the first documentation in rodents,
which are usually highly specialized granivores [19–21].

To examine the role of GLSs in modifying the behavior of
A. cahirinus, we presented captive naive A. cahirinus (n = 21)
with whole fruits containing seeds that had undergone treat-
ment to deactivate myrosinase. In this experiment, less than
20% of the seeds were left intact by the rodents, compared
to more than 73% for untreated seeds with natural myrosinase
activity (Mann-Whitney U = 46.5, p < 0.001). Thus, when faced
with a ‘‘disarmed’’ mustard oil bomb, Acomys behaved as
a seed predator. To further examine the effects of consump-
tion of different parts of the fruit, we performed feeding trials
in which we monitored body mass of rodents fed for 4 days
on one of five possible treatments (n = 8 individuals per treat-
ment). Treatments 1 (pulp and seeds mashed together) and 2
CURBIO 9572
(purifiedGLSsmashedwith seeds) contained all the necessary
components to generate the mustard oil bomb, whereas the
other treatments contained only some of the components.
Only treatment 1 had a significant negative effect on the
body mass of A. cahirinus (Figure 3). Treatment 2 also resulted
in decreased body mass, although not significantly, relative to
controls (treatments 3–5), probably because the pulp, which
wasmissing in treatment 2, provides an optimal chemical envi-
ronment for the myrosinase enzyme activity.
The mustard oil bomb is well established for its role in pre-

venting herbivory [8, 12]. Generally, GLSs are found in all
plant organs, and their concentration may vary between
organs as well as between individuals of the same species
([22]; A.L. and I.I., unpublished data). The myrosinase enzyme
is stored in cells separated from GLSs, presumably to avoid
autotoxic effects [8, 22]. Some herbivores utilize this separa-
tion to avoid the mustard oil bomb. For example, green peach
aphids, Myzus persicae, consume phloem containing GLSs
while leaving the cells containing myrosinase that surround
it intact [8, 23]. Here we demonstrate a new role for this
mechanism in ripe fruits: a generalistic, species-independent,
seed-dispersal-promoting mechanism resulting in an unusual
relationship between a plant and a predominantly seed-
predating rodent. We found that the granivorous rodent



Figure 3. Feeding Trials

Change from initial body mass of A. cahirinus after 4 days of feeding on

different O. baccatus diets. Only the activated mash diet had a significant

negative effect on body mass. The effect of extracted GLSs combined

with seeds did not differ significantly from that of the activated mash diet.

Data are presented as means 6 SE (n = 8 animals per diet group). ANOVA

showed a significant effect of the different O. baccatus diets (F4,35 = 5.4,

p < 0.005); letters above columns indicate significant differences (p < 0.05,

Bonferroni multiple comparison).
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A. cahirinus circumvents the activation of GLSs found in
O. baccatus fruits by spitting viable seeds, thus becoming
a seed disperser. When the mustard oil bomb was disarmed
by inactivation of the myrosinase enzyme, the rodent returned
to its typical behavior as a seed predator. When offered diets
containing a GLS-myrosinase combination, A. cahirinus were
negatively impacted. No such effect was evident when feeding
on GLSs, on seeds (containing myrosinase), or on pulp with
seeds containing deactivated myrosinase. Given the impor-
tance of O. baccatus as a keystone species in the desert
ecosystem [13], this mustard oil bomb mechanism and the
ability of A. cahirinus to alter its behavior with respect to
SMs in the fruits illustrates the flexibility of symbiotic relation-
ships within an ecological timescale. Moreover, our findings
suggest an intraspecies, in addition to interspecies, variation
of the directed-deterrence hypothesis: SMs in ripe fruits deter
individuals if they act as seed predators but have no such
effect on individuals of the same species acting as seed
dispersers. Our results suggest that SMs in ripe fruits play
a deeper role in plant fitness by shaping plant-animal interac-
tions much more than previously assumed.

Supplemental Information

Supplemental Information includes Supplemental Experimental Procedures

and three movies can be found with this article online at doi:10.1016/j.cub.

2012.04.051.
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